Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses.

نویسندگان

  • Won-Mee Park
  • Yongfu Wang
  • Soodong Park
  • Janna V Denisova
  • Joseph D Fontes
  • Andrei B Belousov
چکیده

Coupling of neurons by electrical synapses (gap junctions) transiently increases in the mammalian CNS during development. We report here that the developmental increase in neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein) are regulated by an interplay between the activity of group II metabotropic glutamate receptors (mGluRs) and GABA(A) receptors. Specifically, using dye coupling, electrotonic coupling, Western blots and small interfering RNA in the rat and mouse hypothalamus and cortex in vivo and in vitro, we demonstrate that activation of group II mGluRs augments, and inactivation prevents, the developmental increase in neuronal gap junction coupling and Cx36 expression. However, changes in GABA(A) receptor activity have the opposite effects. The regulation by group II mGluRs is via cAMP/PKA-dependent signaling, and regulation by GABA(A) receptors is via Ca(2+)/PKC-dependent signaling. Furthermore, the receptor-mediated upregulation of Cx36 requires a neuron-restrictive silencer element in the Cx36 gene promoter, and the downregulation involves the 3'-untranslated region of the Cx36 mRNA, as shown using reverse-transcription quantitative real-time PCR and luciferase reporter activity analysis. In addition, the methyl thiazolyl tetrazolium analysis indicates that mechanisms for the developmental increase in neuronal gap junction coupling directly control the death/survival mechanisms in developing neurons. Together, the results suggest a multitiered strategy for chemical synapses in developmental regulation of electrical synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of synaptogenesis in the plexiform layers of the chick retina: a transmission electron microscopic study.

The presently acknowledged onset of synaptogenesis in the chick retina from embryonic day 12 (E12) onward stands in contrast with the appearance of spontaneous electrical activity, of presynaptic proteins, or of neurotransmitters during early formation of the inner (E6-E8) and outer (E9) plexiform layers. Therefore, we investigated the chick retina from E6 to E12 at which age first synapses app...

متن کامل

Artificial electrical synapses in oscillatory networks.

1. We use an electronic circuit to artificially electrically couple neurons. 2. Strengthening the coupling between an oscillating neuron and a hyperpolarized, passive neuron can either increase or decrease the frequency of the oscillator depending on the properties of the oscillator. 3. The result of electrically coupling two neuronal oscillators depends on the membrane potentials, intrinsic pr...

متن کامل

Transient electrical coupling regulates formation of neuronal networks.

Electrical synapses are abundant before and during developmental windows of intense chemical synapse formation, and might therefore contribute to the establishment of neuronal networks. Transient electrical coupling develops and is then eliminated between regenerating Helisoma motoneurons 110 and 19 during a period of 48-72 h in vivo and in vitro following nerve injury. An inverse relationship ...

متن کامل

A new measure for the strength of electrical synapses

Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here, we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity ...

متن کامل

Corrigendum: Robust Type-specific Hemisynapses Induced by Artificial Dendrites

Type-specificity of synapses, excitatory and inhibitory, regulates information process in neural networks via chemical neurotransmitters. To lay a foundation of synapse-based neural interfaces, artificial dendrites are generated by covering abiotic substrata with ectodomains of type-specific synaptogenic proteins that are C-terminally tagged with biotinylated fluorescent proteins. The excitator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 16  شماره 

صفحات  -

تاریخ انتشار 2011